

Energetic and Economic assessment of a hybrid system designed for a multi-family house

Solar 2016 international conference on Solar Heating and Cooling 8-10 June 2016 - Gleisdorf, Austria <u>Alessandro Bellini</u>, Chiara Dipasquale, Roberto Fedrizzi

Institute for Renewable Energy

- Aim of the work
- Methodology
- Results
- Conclusion

- Aim of the work
- Methodology
- Results
- Conclusion

Energy demand limitation

4

3

Institute for Renewable Energy

Outline

- Aim of the work
- Methodology
- Results
- Conclusion

7

1

Reference building models

9

Methodology

Building Model:

- 5 floors •
- 2 dwellings per floor
- 50 m²/dwelling •

Rest of the second seco		
Envelope		
renovation		
solutions		

		Reference	Renovated	Reduction	
	EL	Heating	Heating		
		Demand	Demand		
		[kWh/m²y]	[kWh/m²y]	[%]	
Rome	15	108	13.3	88	
Rome	70	108	69.1	36	
Stuttgart	15	193	16.1	91	
Stuttgart	70	193	78.3	59	
Stockholm	15	119	15.0	87	
Stockholm	70	119	73.1	39	

Passive solutions:

- Envelope insulation
- New windows •
- Mechanical ventilation .

EURAC research

Institute for Renewable Energy

Methodology

Analysed configurations

Case Name	STC Area	STC tilt angle	PV Area	PV tilt angle
[-]	[m ²]	[°]	[m ²]	[°]
Base Case	-	-	-	-
AWHP	-	-	-	-
AWHP+PV	-	-	24	30
AWHP+STC18	18	30	-	-
AWHP+STC28	28	30	-	-
AWHP+STC18+PV	18	30	24	30
AWHP+STC28+PV	28	30	24	30

11

Institute for Renewable Energy

- Aim of the work
- Methodology
- Results
 - Seasonal Performance Factor
 - Renewable Energy Fraction
 - Primary Energy
 - Total retrofit investment cost
 - Total annualized cost of energy
- Conclusion

- Aim of the work
- Methodology
- Results
 - Seasonal Performance Factor
 - Renewable Energy Fraction
 - Primary Energy
 - Total retrofit investment cost
 - Total annualized cost of energy
- Conclusion

- Aim of the work
- Methodology
- Results

EURAC

- Seasonal Performance Factor
- Renewable Energy Fraction
- Primary Energy
- Total retrofit investment cost
- Total annualized cost of energy
- Conclusion

EURAC Institute for Renewable Energy Results - Renewable Energy Fraction RENF_70 60% RENF_15 50% Rome 40% Renewable Energy Fractio, RENF [%] 15-70 kWh/m²y 30% 20% 10% 0% 70% RENF_70 60% RENF_15 Stockholm 50% 40% 15-70 kWh/m²y 30% 20% 10% ANHPOSICE PR AMPRISCO ANHP-STC18 ANIR*SC 8*PN 0% AMHP-P4 AWHR ase case $RENF_{tot} = \frac{Q_{RENheat} + Q_{RENDHW} + PV_{cool}}{Q_{heat} + Q_{DHW} + Q_{cool}}$ 16

EURAC research

Outline

- Aim of the work
- Methodology

• Results

- Seasonal Performance Factor
- Renewable Energy Fraction
- Primary Energy
- Total retrofit investment cost
- Total annualized cost of energy
- Conclusion

- Aim of the work
- Methodology
- Results
 - Seasonal Performance Factor
 - Renewable Energy Fraction
 - Primary Energy
 - Total retrofit investment cost
 - Total annualized cost of energy
- Conclusion

- Aim of the work
- Methodology
- Results
 - Seasonal Performance Factor
 - Renewable Energy Fraction
 - Primary Energy
 - Total retrofit investment cost
 - Total annualized cost of energy
- Conclusion

EURAC

Institute for Renewable Energy

Results - Total annualized cost of energy [€/m²y]

$$TC = (I_0 + C_{r_N}) + C_{m_N} + C_{fe_N} \ [\text{(}/\text{m}^2\text{y}]$$

 $I_0 + C_{r_N}$ Total annualized retrofit investment cost $[\pounds/m^2y]$

- C_{fe_N} Total annualized final energy cost [ℓ/m^2y]
- C_{m_N} Total annualized maintenance cost [ϵ/m^2 y]

The annualized costs have been calculated over a period of 30 years

iNSPiRe project, Deliverable 6.3a - Performance of the Studied Systemic Renovation Packages - Method, 2016 22

Institute for Renewable Energy

Institute for Renewable Energy

- Aim of the work
- Methodology
- Results
- Conclusion

Conclusion

- A reduction of PE consumption can be obtained applying passive and active solutions to the existing cases
- Among the active solutions, hybrid systems, i.e. heat pump technologies, coupled with solar thermal collectors and/or PV, represent a solution for the PE consumption reduction

 Solar collectors are mainly exploited for the DHW production. An increase of 35% of the field area slightly improve the PE reduction (13% in Rome)

26

Conclusion

- Total annualized energy cost in the hybrid system solutions are lower than in the reference case
- The improvement of passive solutions leads an increase of investment cost but lower final energy costs with an overall lower total annualized cost of energy
- The increase of investment cost due to the solar technologies is balanced by reduced final energy cost with a final comparable total annualized cost of energy

Thank you for the attention

Alessandro.Bellini@eurac.edu

Total annualized cost of energy [€/m²y]

$$TC = (I_0 + C_{r_N}) + C_{m_N} + C_{fe_N} \ [\ell/m^2y]$$

 $I_0 + C_{r_N}$ Total annualized retrofit investment cost [ϵ/m^2 y]

 C_{fe_N} Total annualized final energy cost years [ℓ/m^2y]

 C_{m_N} Total annualized maintenance cost [ϵ/m^2 y]

The annualized have been calculated over a period of 30 years

29

Institute for Renewable Energy

Total annualized cost of energy [€/m²y]

Total annualized final energy cost years

$$C_{fe,N} = \sum_{j=1}^{N} C_{fe} \cdot (1+i_e)^j$$

Total annualized maintenance cost

$$C_{m,N} = \sum_{j=1}^{N} C_m \cdot (1+i)^j$$

Total annualized retrofit investment cost $(I_0 + C_{r_N})$

$$C_{r,0,N} = \sum_{j=0}^{n} C_{r,0}^{(j)} = I_0 \frac{1 - (1+i)^{\tau \cdot n}}{1 - (1+i)^{\tau}} \qquad RV_0 = \frac{RV}{(1+i)^N} = I_0 (1+i)^{\tau \cdot n - 1} \left(1 - \frac{\tau \cdot n - 30}{\tau}\right)$$
$$C_{r,N} = C_{r,0,N} - RV_0 \text{ Total annualized net replacement cost}$$

Total annualized cost of energy [€/m²y]

iNSPiRe project, Deliverable 6.3a - Performance of the Studied Systemic Renovation Packages - Method, 2016 31